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Linear Transceiver Design for Interference
Alignment: Complexity and Computation

Meisam Razaviyayn, Maziar Sanjabi Boroujeni and Zhi-Quan LuoFellow, IEEE

Abstract

Consider a MIMO interference channel whereby each transmitter and receiver are equipped with multiple antennas. The basic
problem is to design optimal linear transceivers (or beamformers) that can maximize system throughput. The recent work [1]
suggests that optimal beamformers should maximize the total degrees of freedom and achieve interference alignment in high SNR.
In this paper we first consider the interference alignment problem in spatial domain and prove that the problem of maximizing
the total degrees of freedom for a given MIMO interference channel is NP-hard. Furthermore, we show that even checking the
achievability of a given tuple of degrees of freedom for all receivers is NP-hard when each receiver is equipped with at least three
antennas. Interestingly, the same problem becomes polynomial time solvable when each transmit/receive node is equipped with
no more than two antennas. Finally, we propose a distributed algorithm for transmit covariance matrix design, while assuming
each receiver uses a linear MMSE beamformer. The simulation results show that the proposed algorithm outperforms the existing
interference alignment algorithms in terms of system throughput.

I. I NTRODUCTION

Consider a multiuser communication system in which a number of users must share common resources such as frequency,
time, or space. The mathematical model for this communication scenario is the well-knowninterference channel, which consists
of multiple transmitters simultaneously sending messages to their intended receivers while causing interference to each other.
Interference channel is a generic model for multiuser communication and can be used in many practical applications such as
Digital Subscriber Lines (DSL) [3], Cognitive Radio (CR) systems [4] and ad-hoc wireless networks [5], [6].

A central issue in the study of interference channel is how to mitigate multiuser interference. In practice, there are several
commonly used methods for dealing with interference. First, we can treat the interference as noise and just focus on extracting
the desired signals (see [15], [21]). This approach is widely used in practice because of its simplicity and ease of implementation,
but is known to be non-capacity achieving in general. An alternative technique is channel orthogonalization whereby transmitted
signals are chosen to be nonoverlapping either in time, frequency or space, leading to Time Division Multiple Access, Frequency
Division Multiple Access or Space Division Multiple Access respectively. While channel orthogonalization effectively eliminates
multiuser interference, it can lead to inefficient use of communication resources and is also generally non-capacity achieving.
Another interference management technique is to decode and remove interference. Specifically, when interference is strong
relative to desired signals, a user can decode the interference first, then subtract it from the received signal, and finally decode
its own message (see [8] and [11]). This method is less common in practice due to its complexity and security issues.

In a cellular system, multi-cell interference management is a major challenge. So far various base station cooperation
techniques have been proposed to mitigate inter-cell interferences, including multi-point coordinated transmission, or network
MIMO transmission [43–45]. Most of these techniques require each base station to have full/partial channel state information
(CSI) as well as the knowledge of actual independent data streams to all remote terminals. With the complete sharing of data
streams and CSI, the multi-cell scenario is effectively reduced to a single cell interference management problem with either
total [46] or per-group-of-antennas power constraints [47], [48]. While these techniques can offer significant improvement
on data throughput, they also have several drawbacks including stringent requirement on base station coordination, the large
demand on the communication bandwidth of backhaul links, and the heavy computational load associated with the increasing
number of cells [49], [50].

Theoretically, what is the optimal interference management strategy? The answer is related to the characterization of capacity
region of an interference channel, i.e., determining the set of rate tuples that can be achieved by the users simultaneously. For
the noiseless case, the capacity region and the optimal precoding strategy of the two user interference channel is discussed in [8]
and [7]. In spite of intensive research on this subject over the past three decades ( [7] - [20]), the capacity region of interference
channels is still unknown for general case (even for small number of users). The lack of progress to characterize the capacity
region for a MIMO interference channel has motivated researchers to derive various approximations of the capacity region. For
example, the maximum total degrees of freedom (DoF) corresponds to the first order approximation of sum-rate capacity of an
interference channel at high SNR regime. Maximizing this approximation of sum-rate leads us to the interference alignment
method [1]. For frequency selective channels, interference alignment corresponds to correlated signalling across different

This work is supported in part by the Army Research Office, Grant No. W911NF-09-1-0279, by the National Science Foundation, grant number CMMI-
0726336, and by a research gift from Huawei Technologies Inc.

The authors are with the Department of Electrical and Computer Engineering, University of Minnesota, 200 Union Street SE, Minneapolis, MN 55455.
Emails:{razav002,sanja006,luozq}@ece.umn.edu.
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frequency tones. This linear transceiver scheme for interference alignment is a generalization of the standard OFDMA scheme
whereby each data stream is transmitted on a single subcarrier, which corresponds to using the standard unit basis vectors{ei}
(the i-th standard unit vector) for transmit beamforming. The linear transceiver structure for interference alignment is more
general since it does not require diagonal structure nor mutual orthogonality (two transmit covariance matricesX, Y are said
to be orthogonal ifTr(XY ) = 0).

If we remove mutual orthogonality condition and impose only diagonal structure on transmit covariance matrices, then the
interference management problem is reduced to the dynamic spectrum management problem [40] where the goal is to find the
optimal power allocation (i.e., optimal diagonal transmit covariance matrices) which can maximize system throughput. This
problem has recently been a topic of intensive research in the signal processing and communications communities. For diagonal
matrix channel case (e.g. frequency selective scenario), the problem of maximizing sum-rate has been shown to be NP-hard
[40]. Several algorithms have been proposed which provide varied performance in different channel conditions. These include:
Iterative Waterfilling Algorithm IWFA [22], Successive Convex Approximation Low complExity (SCALE) algorithm [39],
Autonomous Spectrum Balancing (ASB) [29], Optimal Spectrum Balancing (OSB) [24]. Furthermore, different algorithms are
proposed for the case when the channel matrices are non-diagonal. Authors in [23], [25] proposed IWFA based algorithms for
power allocation. However, these selfish approaches work well only in low SNR cases or when the interference is low.

Compared to the networked MIMO approach, interference alignment requires less information exchange among transmitters,
and is therefore simpler to implement in practice. Recently two iterative algorithms have been proposed for interference
alignment [2], [41]. Both appear to work well in simulation of small systems (e.g., three users, each equipped with two
antennas).1 These algorithms require system users to first specify the DoFs for all receivers and then attempt to achieve them
by iteratively aligning the interferences. However, these algorithms can not check if a given tuple of DoF is achievable, nor is
there any guarantee for reaching interference alignment even when the given tuple of DoF is achievable. Moreover, by focusing
only on high SNR regime and interference alignment, these algorithms do not attempt any power allocations across different
data streams. This can result in linear transceivers with suboptimal performance at low to intermediate SNRs.

In this paper, we consider the problem of maximizing the sum of DoFs and the problem of checking if a given set of
DoFs is achievable with linear transceivers. We study the complexity status of both of these problems over the spatial domain
and establish their NP-hardness. These results suggest that the two existing algorithms for interference alignment [2], [41]
cannot converge in general. We also propose a distributed algorithm to design linear transceivers for interference channels. Our
approach is based on using MMSE receivers while optimizing transmit covariance matrices for all transmitters. We maximize the
weighted sum of a utility of SINR’s for each data stream and use iterative convex optimization/relaxation to compute a (local)
optimal solution. The utility function isSINR/(1 + SINR) which converges to1 when SINR→ ∞, and is proportional
to SINR when the SINR value is small. In this way, maximizing the sum of utilities for all data streams corresponds to
maximizing the total DoF when the noise vanishes. Simulations show that our algorithm performs well in all SNR regions and
can deliver far superior sum-rate performance than the existing interference alignment algorithms of [2], [41]. Compared to
the networked MIMO approach which requires sharing of data streams, our linear transceiver design algorithm requires less
information exchange: at each iteration, only small covariance matrices are exchanged, the size of which are proportional to
the antenna numbers at each transmitter or receiver.

II. SYSTEM MODEL

Consider aK-user MIMO interference channel withK transmitter - receiver pairs. LetHkj be an Nk × Mj matrix
representing the channel gain from transmitterj to receiverk, whereMj andNk denote the number of antennas at transmitterj
and receiverk, respectively. The received signal at receiverk is given by

yk =
K∑

j=1

Hkjxj + nk,

wherexj is an Mj × 1 random vector that represents the transmitted signal of userj and nk ∼ N (0, σ2I) is a zero mean
additive white Gaussian noise.

For practical considerations, we focus on optimallinear transmit and receive strategies that can maximize system throughput.
In particular, suppose transmitterk uses a beamforming matrixVk to send the signal vectorsk to its intended receiverk. At
the receiver side, receiverk estimates the transmitted data vectorsk by using a linear beamforming matrixUk, i.e.,

xk = Vk sk, ŝk = UT
k yk,

where the data vectorsk ∈ Cdk×1 is normalized so thatE[sksT
k ] = I, andŝk is the estimate ofsk atk-th receiver.Vk ∈ CMk×dk

andUk ∈ CNk×dk are the beamforming matrices at the transmitter and the receiver of userk, respectively.

1Even though the two algorithms were motivated from different perspectives, they are in fact algorithmically identical.
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It is known that the problem of designing optimal beamformers to maximize sum-rate of the system is NP-hard [40] even
in the single transmit/receive antenna case. Notice that recent works [1], [2] suggest that the optimal strategy should have
interference alignment structure in the high SNR regime. Therefore, we are led to find a linear transmission-reception strategy
that can maximize the total degrees of freedom. In the next section, we provide the complexity analysis of this problem.

III. NP-HARDNESS OFOPTIMAL INTERFERENCEALIGNMENT

In this section, we show that for a given channel, not only the problem of finding the maximum DoF is NP-hard, but also
the problem of checking the achievability of a given tuple of DoF,(d1, ..., dK), is NP-hard when there are at least 3 antennas
at each node.

Notice that the interference alignment conditions in thek-th receiver are

UT
k HkjVj = 0, ∀j 6= k, (1)

rank
(
UT

k HkkVk

)
= dk. (2)

The first equation guarantees that all the interference is in the subspace orthogonal toUk while the second one assures that
the signal subspaceHkkVk has dimensiondk and is linearly independent of the interference subspace.

In the sequel, we examine the solvability of above interference alignment problem (1) - (2) in two different cases.

Theorem 1 For a K user MIMO interference channel, maximizing the total DoF, namely,

max
{Uk,Vk}K

k=1

K∑

k=1

dk

s.t. UT
k HkjVj = 0, k = 1, .., K, j 6= k

rank
(
UT

k HkkVk

)
= dk, k = 1, ..,K

is NP-hard. Moreover, if each node is equipped with at least 3 antennas, then the problem of checking the achievability of a
given tuple of DoF,(d1, d2, . . . , dK), is also NP-hard.

Proof: The proof of the first part is based on a polynomial time reduction from the maximum independent set problem
which is known to be NP-complete. For a given arbitrary graphG = (V,E), where|V | = K, consider aK user interference
channel that each receiver and transmitter has a single antenna. Moreover, the channel coefficients are given by:

hjk =
{

1, if j = k or (k, j) ∈ E,
0, otherwise.

It can be checked that the receiver nodes can only achieve a DoF of either 0 or 1, and those receiver nodes achieving a DoF
of 1 form an independent set inG. Thus, the problem of maximizing the total DoF for the above interference channel is
equivalent to the problem of finding the maximum independent set of vertices in the graphG.
In order to prove the second part we use a polynomial reduction from the 3-colorability problem. The latter problem is to
determine whether the nodes of a graph can be assigned one of the three possible colors so that no two adjacent nodes are
colored the same. The 3-colorability problem is known to be NP-Complete. There are two main steps in the construction. In the
first step, some dummy nodes are added to the channel in order to force a discrete structure such that each non-dummy node
may only have one of the three possible cases. The second step is to define the direct channels in order to make a polynomial
reduction from the 3-colorability of an arbitrary graph to this problem.

For an arbitrary graphG with N nodes, we will construct a special MIMO interference channel for which the achievability
of one degree of freedom at each user is equivalent to the 3-colarability ofG. In our construction, the MIMO interference
channel will have two types of users:N main users, each equipped with 3 antennas at their transmitters and receivers and
11N dummy users which will be defined later. Hence the total number of users is12N . In the rest of the proof we suppose
that each user (either the dummy user or the main user) wants to send one data stream. In other words we want to check if
the tuple of all ones is achievable by the constructed interference channel or not.

We divide the dummy users into two groups. The number of dummy users in the first group is2N and the number of dummy
users in the second one is9N . Each dummy user in the first group has 3 antennas at its receiver and transmitter, while each
dummy user in the second group has two antennas at its transmitter and receiver. Let us further arrange the2N dummy users
in the first group intoN subsets each containing two users. We denote these subsets asAi, i = 1, ..., N, |Ai| = 2. We also
denote the users in the setAi asai,1 andai,2, and associate them to thei-th main user. For notational consistency, we denote
main useri as ai,0. We will also useai,k,j to denote thej-th transmit antenna of userai,k, where1 ≤ i ≤ N , k = 0, 1, 2
and j = 1, 2, 3. Similarly, we partition the set of9N dummy users in the second group intoN subsetsBi, i = 1, ..., N , each
containing exactly 9 dummy users denoted bybi,`, with ` = 1, .., 9. Each of these9 dummy users will have two receiving
antennas which we denote asbi,`,m, with m = 1, 2.
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Now for any fixedi andj, we consider any size-2 subset of{ai,k,j : k = 0, 1, 2}, e.g.,{ai,0,j , ai,1,j}. For each fixedi and
j, there are exactly 3 of these cardinality-2 subsets. Since there are 3 different choices ofj, we have a total of 9 subsets of this
kind for any fixedi. Let us index these 9 subsets by`, ` = 1, .., 9, and assign thè-th subset to userbi,` in Bi. Now we define
the links in the channel for the users inAi and Bi. First, the channel matrices of all the direct links for any of the dummy
users areI (whereI is the identity matrix of the appropriate size). In addition, none of the dummy users inBi (i = 1, 2, ..., N )
cause interference to the other users (which means that the channel gains between their transmit antennas and the other users’
receive antennas are all zero). Now for the aforementioned`-th subset which we denote asSi,` = {ai,k`1 ,j`1

, ai,k`2 ,j`2
}, we

connectai,k`1 ,j`1
andai,k`2 ,j`2

to bi,`,1 and tobi,`,2, respectively. Here by connecting a transmit antenna to a receive antenna
we mean that the channel coefficient between these two antennas is1. This situation is shown in the figure 1 for the case
Si,1 = {ai,0,1, ai,1,1}. Furthermore, we assume that dummy usersai,k, k = 1, 2 do not suffer from any interference.

1: Channels to the dummy receiverbi,`

Suppose that userai,k (k = 0, 1, 2) uses the transmit beamforming vector(vi,k,1, vi,k,2, vi,k,3). Then the interference received
at the dummy receiver ofbi,` will be:

I bi,`
= (vi,k`1 ,j`1

si,k`1
, vi,k`1 ,j`2

si,k`2
) (3)

where si,k is the signal userai,k intends to send. Notice that the signals which two different users want to transmit are
statistically independent. As a consequence, if we want to have interference alignment at the receiver ofbi,`, so that this user
can send its own data stream, it is necessary and sufficient to havevi,k`1 ,j`1

vi,k`2 ,j`2
= 0. Hence, having the interference

alignment atbi,` for all ` = 1, .., 9 is equivalent to the fact that usersai,k, k = 0, 1, 2 cannot send their messages through the
antennas with the same index, simultaneously. For example, ifvi,0,1 6= 0 thenvi,1,1 andvi,2,1 have to be zero. On the other
hand, considering the fact that each user needs to send one data stream, it follows that none of the usersai,k, k = 0, 1, 2, can
send their message on two of their antennas simultaneously, because otherwise if for exampleai,0 sends its message on two
antennas, then it would result in insufficient spatial dimension for eitherai,1 or ai,2.

As an immediate consequence of these two facts we have just mentioned, we can conclude that the transmit beamforming
vector at each userai,k, k = 0, 1, 2, must be proportional to one of the vectors[1, 0, 0]T , [0, 1, 0]T or [0, 0, 1]T . This is true
specially for the main useri. As we are not concerned about the constant factors, we have successfully imposed a discrete
structure on the problem solution so far. Notice that each dummy userbi,` has a total of 2 dimensions in its receiver. Since
we have aligned the interference at each dummy userbi,`, these users can communicate their data streams easily along the
remaining dimension left for them in their receivers and remove interference which lies in the other dimension. Moreover,
since in our construction the dummy usersai,k, k = 1, 2 do not experience any interference from other users and their direct
channel isI, so these users can easily achieve one degree of freedom. Thus, we only need to take care of the main users.

For each of theN main users, we must pick one of the three transmit beamforming vectors[1, 0, 0]T , [0, 1, 0]T or [0, 0, 1]T

in order to achieve interference alignment at all the main receivers. We suppose all the direct channels for the main users,Hii,
are I. For the cross channels, we use the structure of graphG = (V, E). For each edge(i, j) in G, we setHij = Hji = I .
Otherwise we setHij = Hji = 0 (zero matrix of appropriate size). Consequently, the main usersi and j interfere with
each other if and only if they are connected to each other in graphG. We claim that achieving interference alignment in the
above MIMO interference channel is equivalent to 3-colorability of graphG. This is because each user can choose 3 possible
beamforming vectors, each corresponding to a different color. If main useri chooses one of the three possible beamforming
vectors (or one of the three colors), then this beamforming vector cannot be chosen by any other main users adjacent to the
main useri in the graphG, otherwise the interference would appear in the desired signal space at the receiver of main user
i. This establishes the equivalence between the 3-colorability ofG and the achievability of one degree of freedom for each
user in the constructed MIMO interference channel. Since 3-colorability problem is NP-hard, it follows that the problem of
checking the feasibility of interference alignment is also NP-hard.
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Theorem1 shows that the problem of checking the achievability of a given tuple of DoF is NP-hard if all users (or at
least a constant fraction of them) are equipped with at least three antennas. Our next result shows that when each user is
equipped with no more than two antennas, the same problem can be solved in polynomial time. To this end, we need to define
some notations and make some observations. First of all, the interference alignment problem is equivalent to finding the signal
subspaces at the transmitters and the interference subspaces at the receivers such that the interference alignment conditions are
satisfied, i.e.,

dk = dim(Sk)
HkkSk ⊥ Ik

HkjSj ⊆ Ik ∀j 6= k,

whereSk and Ik denote the signal subspace at the transmitterk and the interference subspace at receiverk, respectively.
The operator⊥ representsthe linear independence of two subspaces. The first condition implies that the signal space has
dimensiondk while the second condition says that the interference subspace and the received signal subspace must be linearly
independent. Finally, the third condition assures that the interference from other users lies in the interference subspace (which
is linearly independent of the signal subspace).

Notice that in the 2-antenna case, ifdj = dk = 1 and rank(Hkj) = 2, and the interference subspaceIk is known, thenSj

can be uniquely determined bySj = H−1
kj Ik, for anyj 6= k. Conversely, ifSj is known, we can uniquely find the interference

subspace of userk, i.e.,Ik = HkjSj . Thus, by starting from a node with a known subspace and traversing the interference links
with full rank channel matrices, we can uniquely determine the signal subspaces in the transmitter sides and the interference
subspaces at the receiver sides as long as they all have one DoF. Furthermore, if we find a loop of full rank interfering links,
the signal subspaces at these nodes must be the eigenvector of the composite channel matrix of the corresponding loop. To
make this point clear, consider a 4-user interference channel. If all interfering links are full rank, by starting from transmitter
1 and use the loop Tx1→ Rx2→ Tx3 → Rx4→ Tx1, we have the following relations

I2 = H21S1, S3 = H−1
23 I2, I4 = H43S3, S1 = H−1

41 I4.

Thus,S1 must be the eigenvector of the loop channel matrixH−1
41 H43H−1

23 H21. Using this observation and the idea of traversing
the full rank interfering channel links, we can establish the polynomial solvability of the problem of checking the achievability
of a given tuple of DoF.

Theorem 2 For a K-user MIMO interference channel where each transmit/receive node is equipped with at most two antennas,
the problem of checking the achievability of a given tuple of DoF is polynomial time solvable.

Proof: By assigning zero channel weight if necessary, we can assume without loss of generality that all transmit-
ters/receivers are equipped with exactly two antennas, i.e.,Mk = Nk = 2, for all k = 1, 2, · · · ,K. Furthermore, notice that if
a user has zero DoF (dk = 0), then we can assign the zero beamforming vector to this user and remove it (both its transmitter
and receiver) from the system. Thus, we can assume1 ≤ dk ≤ 2 for all k = 1, 2, · · · ,K. We further assume that all the
direct channel matricesHkk, k = 1, 2, . . . , K, are nonzero. Now the problem is to determine whether the given tuple of DoF
(d1, d2, · · · , dK) is achievable or not. To this end, we need to define two bipartite graphs over the nodes of the interference
channel (one side of the graph consists of transmit nodes and the other consists of the receive nodes). In particular, we construct
a bipartite graphG by connecting the transmit node of useri to the receive node of userj if and only if the channel between
them is nonzero, i.e.,Hji 6= 0. Furthermore, we construct a bipartite subgraphG′ = (V ′, E′) of G by considering only the
full rank links of G, i.e., connecting transmit nodei to the receive nodej 6= i if and only if rank(Hji) = 2. Notice that the
link between transmit nodei and receive nodei is not included inG′ even if rank(Hii) = 2.

In what follows, we first consider a simple case which gives us the idea of how a loop of rank 2 interfering channels forces
a discrete structure on the choice of signaling subspaces at the transmitters. Then, using this idea, we provide the proof for
the general case.

Consider a connected componentH of G where all the interfering links are full rank and connected, i.e., the induced
subgraph ofH over G′ is connected and contains all the interfering links ofH. We first argue thatH can not contain the
receive node of any userk with dk = 2. Suppose the contrary. Then the direct channel matrix,Hkk, must be full rank. [IfHkk

is rank deficient, then the received signal subspace at receiverk has dimension at most 1, which would make it impossible
to achievedk = 2.] We further claim thatH cannot contain any other nodes. Since the direct link between the transmit and
receive nodes of userk is not contained inH, it follows that the receive node of userk must be connected to another transmit
nodea in H. Let this nodea be associated with a userj (j 6= k). Notice that userj achieves a DoF at least 1 (since all zero
DoF users have been removed fromG). By definition, nodea must be connected to the receive node of userk via a full rank
cross talk channel matrixHkj . Thus, userj will cause a nonzero interference subspace to userk, contradictingdk = 2. Since
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all users with DoF =0 has been removed from graphG, we must havedk = 1 for all receive nodes inH. For the other case
where nodea is a receive node of userj, thena is linked to the transmit node of userk via a full rank channel matrix. In
this case, userk will cause a 2-dimensional interference subspace to userj, making it impossible to havedj ≥ 1.

We now assume that all receive nodes inH have one DoF. We can start from an arbitrary initial node ofH and use Breadth
First Search (BFS) to find a spanning tree. Since each user has one DoF, the signal and interference spaces of all receive nodes
in H are uniquely determined by the signal (or interference) space of the initial node. Since the initial node is arbitrary, this
shows that the signal/interference spaces for all nodes inH are linearly related to each other (via some constant composite
channel matrices, see the discussion before Theorem 2). Fixing any one uniquely determines the rest. For the remaining edges
(or links) not in the spanning tree, they each create a unique loop in the tree. We can compute the composite channel matrices
for these loops (see the discussion before Theorem 2). Notice that each loop matrix (size2×2) has either one, two or infinitely
many eigenvectors (when the composite channel matrix is a constant multiple of identity matrix). Suppose a loop matrix
(starting from a given transmit node, sayb, in the loop) has one or two unique eigenvectors, then the signal space of nodeb
must be generated by one of these eigenvectors. In fact, since the beamforming vectors of nodes inH are linearly related, each
loop in H places a restriction on the choice of beamforming vector of nodeb. Thus, for any fixed transmit nodeb in H, there
are multiple restriction sets, each corresponding to a loop inH caused by adding an edge to the minimum spanning tree and
each containing one/two one-dimensional subspaces from which nodeb’s signal space can be chosen. The receive nodes inH
can achieve interference alignment if and only if these restricted sets of one-dimensional signal subspaces for nodeb share a
common one-dimensional subspace. Moreover, to ensure each user inH achieves one DoF, we need to additionally make sure
that the resulting interference subspaces at all receive nodes inH are linearly independent from the corresponding respective
signal subspaces. Since the total number of restriction sets is at most linear in the number of edges inH and each restriction
set contains at most two one-dimensional subspaces, checking if these restrictions have any common one-dimensional subspace
can be carried out inO(K2) time. Moreover, for each common one-dimensional subspace, checking if the linear independence
between the resulting signal subspace and interference subspace (already aligned) at each receive node can also be performed
in time that is linear in the number of nodes inH, or in O(K) time.

Now we are ready to look into the general case in which the rank 1 links are considered as well as the full rank links.
Since there is no interfering links between different connected components ofG, we can assign the signal subspace for each
connected component separately. Notice that the number of connected components ofG is at mostK, we only need to assign
transmit subspaces for every connected component of G in polynomial time.

Let H be a connected component ofG. Let H ′ ⊆ G′ be a subgraph ofH which contains only links with full rank channel
matrices.H ′ can be broken into various connected components ofG′. By the argument above for such components, the
signal/interference spaces for the nodes in these connected components (consisting of at least two nodes) can be assigned in
one of the two ways:

(B1) The connected component contains a cycle with a channel matrix that is not equal to a constant multiple of the identity
matrix. In the case, the beamforming vectors of all nodes can be determined from the eigenvector(s) of a certain loop
channel matrix. In this case, there are at most two possible choices of signal/interference space for each node.

(B2) The connected component has no loops (i.e., forms a tree) or if every loop has a composite channel matrix that is a
constant multiple of the identity matrix. In this case, the signal/interference spaces of all nodes are linearly related to one
another. The signal/interference space of one node can be fixed at an arbitrary one-dimensional subspace. Once this is
fixed, the signal/interference spaces of other nodes can be derived uniquely.

Consider a rank-1 interfering link inH with channel matrixHij (i 6= j). If user j transmits in the null ofHij , then
the signalling subspace of userj is known, i.e.,Sj = Null(Hij). Otherwise, the interference subspace at useri is known,
i.e., Ii = Range(Hij). This is becausedi ≥ 1, so we havedim Ii ≤ 1. This plus the fact thatRange(Hij) ⊆ Ii implies
Ii = Range(Hij). Therefore, we can assign a Boolean variablexij to each rank-1 channelHij , with “xij = 1” representing
Sj = Null(Hij) and “xij = 0” signifying Ii = Range(Hij). In this way, we associate a Boolean variablexij for each rank-1
crosstalk channel matrixHij in H.

Next we represent the interference alignment condition at each receive node ofH using the Boolean variables{xij} (plus
some auxiliary Boolean variables{yi, zij , zi} defined below). Suppose useri’s receive node is inH. We consider the cases
di = 2 anddi = 1 separately.

Casedi = 2: In this caseIi = 0, so we must havexij = 1. We rewrite this condition in the form of two 2-SAT clauses

xij ∨ yi, xij ∨ ȳi, for all j 6= i and rank(Hij) = 1, (4)

whereyi is an auxiliary Boolean variable. In this case, the satisfaction of (4) and the condition that the receive node of user
i is not connected to other users’ transmit nodes via rank-2 links is equivalent to achieving one DoF for useri.

Casedi = 1 and rank(Hii) = 1: In this case, then the received signal subspace isHiiSi = Range(Hii) anddim Ii = 1, so
that all the interference at the receive node of useri must be aligned in an one-dimensional subspace that is linearly independent
of Range(Hii). We need to further consider several subcases, depending on if the receive node of useri is connected to other
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transmitnodes via rank-1 or rank-2 links. In particular, if the transmit nodes of usersj andk are connected to receive nodei
via rank-1 links, then the interference alignment condition requires the satisfaction of the following 2-SAT clauses

xij ∨ xik, for all j 6= k 6= i such thatrank(Hij) = rank(Hik) = 1 andRange(Hij) 6= Range(Hik),
xij ∨ zij , xij ∨ z̄ij , for all j 6= i such thatrank(Hij) = 1 andRange(Hij) = Range(Hii),

(5)

where zij is a dummy Boolean variable, and the last condition corresponds to the linear independence requirement of the
signal/interference subspaces. Moreover, if there is a rank-2 link connecting the receive node of useri to the transmit node
of user`, ` 6= i, i.e., Hi` is full rank, then the receive node of useri is in H ′. Consequently, the transmit strategy of user
` has only two possibilities B1 and B2 as outlined above. For the Case B1 where the transmit node of user` can pick one
of the two possible beamforming vectorsv0

` , v1
` , we define a Boolean variablez` with “z ` = 0” representingv0

` is chosen,
while “z` = 1” signifying v1

` is chosen. Now the interference alignment for useri requires the satisfaction of following 2-SAT
clauses

z` ∨ xij , for all j 6= ` 6= i such thatrank(Hij) = 1, rank(Hi`) = 2 andHi`v0
` 6∈ Range(Hij),

z̄` ∨ xij , for all j 6= ` 6= i such thatrank(Hij) = 1, rank(Hi`) = 2 andHi`v1
` 6∈ Range(Hij).

(6)

If in Case B1 the transmit node of user` must pick a unique vectorv0
` , then we must havez` = 0 andxij = 1 if Hi`v0

` 6∈
Range(Hij), andz` = 0 if Hi`v0

` ∈ Range(Hij). The latter conditions are equivalent to the satisfaction of the following 2-SAT
clauses:

z̄` ∨ xij , z̄` ∨ x̄ij , z` ∨ xij , for all j 6= ` 6= i s.t. rank(Hij) = 1, rank(Hi`) = 2 andHi`v0
` 6∈ Range(Hij),

z̄` ∨ xij , z̄` ∨ x̄ij , for all j 6= ` 6= i s.t. rank(Hij) = 1, rank(Hi`) = 2 andHi`v0
` ∈ Range(Hij).

(7)

To ensure linear independence of the signal and interference subspaces for useri, we must make sure the satisfaction of the
following 2-SAT clauses

z̄` ∨ yi, z̄` ∨ ȳi, for all ` 6= i s.t. rank(Hi`) = 2 andHi`v1
` ∈ Range(Hii),

z` ∨ yi, z` ∨ ȳi, for all ` 6= i s.t. rank(Hi`) = 2 andHi`v0
` ∈ Range(Hii),

(8)

whereyi is a dummy Boolean variable. Now we consider Case B2. Suppose the receive node of useri lies in a connected
componentH ′′ of H ′. Then, for each pair of receive node of usersi and` in H ′′ (i 6= `), there exists a (efficiently computable)
nonsingular matrixGi` such that

Ii = Gi`I`.

To ensure this condition, the following 2-SAT clauses must be satisfied for all transmit nodesj andk in H ′′:

xij ∨ x`k, for all j 6= i, k 6= ` s.t. rank(H`k) = rank(Hij) = 1, andGi`Range(H`k) 6= Range(Hij). (9)

Furthermore, to make sure that the signal and interference subspaces are linearly independent at the receive node of useri,
we must have for all transmit nodej in H ′′ that the following 2-SAT clauses are satisfied

xij ∨ zij , xij ∨ z̄ij , for all j 6= i s.t. Range(Hij) = Range(Hii). (10)

Finally, we notice that the Boolean variables{xi`, zi`} all represent the signaling strategies of user`. We must ensure that these
signaling strategies are compatible. In other words, we can not simultaneously have bothS` = Null(Hi`) andS` = Null(Hj`)
(j 6= i), unless of course the two null spaces are equal. This implies that we should have

x̄i` ∨ x̄j`, for all i 6= j 6= ` s.t. rank(Hi`) = rank(Hj`) = 1, Null(Hi`) 6= Null(Hj`). (11)

Moreover, if the transmit node of user` is also in H ′′ and its transmit beamforming vector must be chosen from the set
{v0

` , v1
`} (Case B1). Then, by a similar argument, we must also ensure the following compatibility conditions:

x̄i` ∨ z`, for all i 6= j 6= ` s.t. rank(Hi`) = 1, rank(Hj`) = 2, v0
` 6∈ Null(Hi`),

x̄i` ∨ z̄`, for all i 6= j 6= ` s.t. rank(Hi`) = 1, rank(Hj`) = 2, v1
` 6∈ Null(Hi`).

(12)

In case of B2 (i.e.,H ′′ is a tree or all loop matrices are constant multiples of identity matrix), then the transmit subspace of
user` (which lies inH ′′) can be chosen continuously (rather than from a discrete set{v0

` , v1
`}). In this case, the compatibility

condition (11) is sufficient; there is no additional compatibility condition needed.
Casedi = 1 and rank(Hii) = 2: In this case, if the transmit node of useri is connected to a receive node of userj via

a rank-1 link, thenxji = 1 signifies the use of transmit beamforming subspace ofNull(Hji) for useri; else if transmitteri
is in H ′′ so that its transmit beamforming direction must be chosen fromv0

i , v1
i , corresponding tozi = 0 and1 respectively

(Case B1). [Case B2 corresponds to the continuous selection of beamforming vector for useri; no 2-SAT clause is needed in
that case.] In the first case, the signal subspace at receive node of useri becomesHiiNull(Hji), while in the second case,
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the signal subspace isHiiv0
i , or Hiiv1

i . We must make sure the signal subspace is linearly independent from the interference
subspace of useri. This implies that the following 2-SAT clauses must be satisfied:

x̄ji ∨ xi`, for all i 6= j 6= ` s.t. rank(Hi`) = rank(Hji) = 1, Range(Hi`) = HiiNull(Hji),
xi` ∨ zi, for all i 6= j s.t. rank(Hi`) = 1, i ∈ H ′′, Hiiv0

i ∈ Range(Hi`),
xi` ∨ z̄i, for all i 6= j 6= ` s.t. rank(Hi`) = 1, i ∈ H ′′, Hiiv1

i ∈ Range(Hi`).
(13)

It can be checked that the DoF tuple(d1, d2, . . . , dK) is achievable if and only if conditions (4)-(13) are satisfied for some
binary realizations of Boolean variables{xij , yi, zi, zij}. Moreover, the number of such 2-SAT clauses is polynomial inK
(in fact O(K4)). Hence, we have transformed the DoF feasibility problem in polynomial time to an instance of 2-satisfiability
problem. The latter problem is known to be solvable in polynomial time.

IV. STRATEGIES FORL INEAR TRANSCEIVERDESIGN

In this section, we propose linear transceiver design algorithms for interference channels. Using linear transceivers introduced
in Section II, the estimated data stream at receiverk is given by

ŝk = UT
k

K∑

j=1

HkjVjsj + UT
k nk

and the SINR value for theq-th data stream of userk, γq
k, is given by

γq
k =

|uq
k

T Hkkv
q
k|2

σ2
k‖uq

k‖2 +
∑

(j,r)6=(k,q) |uq
k

T Hkjvr
j |2

whereuq
k andvq

k denote theq-th column ofUk andVk, respectively. Using a linear MMSE receiveruq
k, we have

γq
k = vq

k
T HT

kk(σ2I +
∑

(j,r) 6=(k,q)

Hkjvr
jv

r
j
T HT

kj)
−1Hkkv

q
k.

One possible choice of the utility function for thek-th user could be the sum of the SINR values of its data streams, i.e.,

ξk =
∑

q

γq
k

=
∑

q

vq
k

T HT
kk(σ2I +

∑

(j,r)6=(k,q)

Hkjvr
jv

r
j
T HT

kj)
−1Hkkv

q
k.

However, maximizingξk does not lead to the maximization of the total DoF in high SNR. Therefore, we need to introduce
another utility function in order to capture more DoF for each user. First, we defineU(γ) = γ

1+γ asthe utility function of the
q-th data stream of userk and then, we considerUk =

∑
q U(γq

k) as the utility function of userk. Thus, at high SNR,Uk

equals the DoF at receiverk, while at low SNR,Uk equals the sum SINR. Using the rank one update of the matrix inverse
term in SINR value, we can rewriteUk as

Uk =
∑

q

vq
k

T HT
kk(σ2I +

∑

(j,r)

Hkjvr
jv

r
j
T HT

kj)
−1Hkkv

q
k.

The proposed utility function preserves fairness among different data streams of userk and also closely approximates the sum
DoF at high SNR.

Directly optimizing linear transceiversUk ’s andVk ’s requires specification of DoFsdk in advance, since the dimension of
Uk andVk depends ondk. To avoid this explicit dependence ondk, we consider optimizing the transmit covariance matrix
instead of linear transceiversUk andVk. In particular, we write the utility function of userk as

Uk = Tr

[
HkkQkHT

kk(σ2I +
k∑

`=1

Hk`Q`HT
k`)

−1

]
(14)

whereQk =
∑

q vq
k(vq

k)T is the transmit covariance matrix of thek-th user. However, this utility function still does not related
to the sum-rate directly. In the sequel, we propose a weighting approach to relate the utility function in (14) to the rate of
userk.

Consider the well-known weighted sum-rate maximization problem

max
{Qk}K

k=1

K∑

k=1

αkRk (15)

s.t. Tr(Qk) ≤ pk, Qk < 0
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whereRk , log det
(
I + HkkQkHT

kk(σ2I +
∑

`6=k Hk`Q`HT
k`)

−1
)

is the achievable rate of userk and the coefficientαk

denotes userk’s weight. Using linear algebra to simplify the objective function, the above problem can be reformulated as the
following equivalent optimization problem:

min
{Qk}K

k=1

K∑

k=1

αk log det


I−HkkQkHT

kk

(
σ2I +

K∑

`=1

Hk`Q`HT
k`

)−1

 (16)

s.t. Tr(Qk) ≤ pk, Qk < 0,

where the term inside the determinant is linearly related to the utility function in (14). Similar to [51], we reformulate the
problem (16) by further introducing new optimization variablesWk ∈ RM×M , k = 1, 2, . . . , K, to obtain the following
equivalent optimization problem

min
{Qk,Wk}K

k=1

K∑

k=1

αkTr(Wkgk(Q))−
K∑

k=1

αk log detWk (17)

s.t. Tr(Qk) ≤ pk Qk < 0,

whereQ = (Q1,Q2, . . . ,QK) and

gk(Q) , I−HkkQkHT
kk(σ2I +

K∑

`=1

Hk`Q`HT
k`)

−1.

The optimization problem (17) is convex in{Wk}K
k=1. By checking the first order optimality condition, the optimalWk is

given by

Wopt
k = I + HkkQkHT

kk(σ2I +
∑

` 6=k

Hk`Q`HT
k`)

−1, ∀ k = 1, 2, . . . , K. (18)

By plugging back the optimalWopt
k in (17), we immediately see the equivalence of (17) and (16). Furthermore, in order to

have a distributed approach, we let users update their transmit covariance matrix independently. Therefore, for fixed{Wk}K
k=1,

userk can solve the following optimization problem to update its transmit covariance matrix:

max
Qk

αkTr

[
WkHkkQkHT

kk(σ2I +
K∑

l=1

Hk`Q`HT
k`)

−1

]

+
∑

j 6=k

αjTr

[
WjHjjQjHT

jj(σ
2I +

K∑

l=1

Hj`Q`HT
j`)

−1

]
(19)

s.t. Tr(Qk) ≤ pk Qk < 0.

Unfortunately, this objective function is not convex. In order to make the problem convex, we keep the first term in the objective
function (which is a concave function ofQk) and use the local linear approximation of the second term, i.e.,

∑

j 6=k

αj Tr
[
WjHjjQjHT

jj(Cjk + HjkQkHT
jk)−1

]

≈
∑

j 6=k

αjTr
{
WjHjjQjHT

jj

[
(Cjk + HjkQ̃kHT

jk)−1

−(Cjk + HjkQ̃kHT
jk)−1HjkQkHT

jk(Cjk + HjkQ̃kHT
jk)−1

+ (Cjk + HjkQ̃kHT
jk)−1HjkQ̃kHT

jk(Cjk + HjkQ̃kHT
jk)−1

]}

whereQ̃k is the local value of transmit covariance matrix at the previous iteration andCjk is the received signal covariance
matrix at receiverj excluding thek-th user’s signal, i.e.,

Cjk , σ2I +
∑

` 6=k

Hj`Q`HT
j`. (20)

By substituting the above approximation in (19) and simplifying the resulting optimization problem, we get

max
Qk

αkTr

[
WkHkkQkHT

kk(σ2I +
K∑

l=1

Hk`Q`HT
k`)

−1

]
− Tr [BkQk]

s.t. Tr(Qk) ≤ pk Qk < 0

(21)
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whereBk ,
∑

j 6=k HT
jk(Cjk +HjkQ̃kH

T
jk)−1αjWjHjjQjH

T
jj(Cjk +HjkQ̃kH

T
jk)−1Hjk. The objective function in (21) considers

the effect of transmit covariance matrix of userk on not only its own rate, but also those of others in the interference channel.
Similar balanced approaches have been considered in related works, see [42], [52–54]. By further simplification of the objective
function and using the Schur complement, the problem can be formulated as the following Semi-definite Programming (SDP)
form:

min
Qk,Y

αkTr [Y] + Tr [BkQk] (22)

s.t. Tr(Qk) ≤ pk, Qk < 0,[
Ckk + HkkQkHT

kk (WkCkk)1/2

(WkCkk)1/2 Y

]
< 0.

Note that the matricesWk and Ckk are updated by (18) and (20) respectively. ThusWkCkk is Hermitian positive semi-
definite. Hence, for fixed matrices{Wk}K

k=1, userk can update its transmit covariance matrixQk by solving the above SDP
problem.

1. initialize with Qk = pk

Mk
I andWk = I, for all k = 1, 2, · · · ,K

2. repeat
3. for k = 1, 2, · · · ,K do
4. updateWk according to (18)
5. updateQk by solving (22)
6. updateWk according to (18)
7. until convergence, or‖Q̃−Q‖ ≤ ε

2: An iterative SDP approximation algorithm for sum-rate maximization

Note that the second term in (19) is a convex function ofQk. Therefore, the local linear approximation is a lower bound
which is tight at the current point̃Qk. Hence, by solving (22), we minimize a concave lower bound of the original utility
function (19). Since the previous iteratẽQk is feasible for (19), it follows that the system utility function (i.e., the objective
function of (19)) is non-decreasing. Furthermore, (19) is bounded from above and this implies the sequence of objective function
values generated by the proposed algorithm converges. The following theorem further establishes the iterate convergence to a
stationary point for the proposed algorithm. In order to prove that each limit point of this algorithm is a stationary point of
the original problem we need the following lemma.

Lemma 1 If the direct channel matrices are full-rank and tall, the function:

f̄2k−1(Qk) , αkTr

[
WkHkkQkHT

kk(σ2I +
K∑

l=1

Hk`Q`HT
k`)

−1

]
− Tr [BkQk] (23)

is strictly concave with respect to symmetric positive semidefinite matrixQk. Moreover, the objective function of(17) is also
strictly convex with respect toWk.

Proof: See Appendix, Section VI.

Theorem 3 Assuming that the direct channel matrices,Hkk, are full rank and tall, then every limit point of the proposed
algorithm is a stationary point of(15).

Proof: According to Lemma 2 (see Appendix, section VI), every stationary point of (17) is also a stationary point of
(15). Therefore, we only need to prove that every limit point of the proposed algorithm is a stationary point of (17). To this
end, let us define the auxiliary variableXi = {Xi

`}2K
`=1, whereXi

2k−1 , Qi
k is the updated transmit covariance matrix of

userk at i-th iteration andXi
2k , Wi

k is the updated weight matrix of userk at i-th iteration. In particular, we defineQi
k to

be the solution of the following problem

Xi
2k−1 = Qi

k , Argmax
Qk

f̄2k−1(Qk;Xi
1,X

i
2, . . . ,X

i
2k−2,X

i−1
2k−1,X

i−1
2k , . . . ,Xi−1

2K )

s.t. Tr(Qk) ≤ pk, Qk < 0
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where f̄2k−1(Qk;Xi
1,X

i
2, . . . ,X

i
2k−2,X

i−1
2k−1,X

i−1
2k , . . . ,Xi−1

2K ) is the objective function of (21) which is the local concave
lower bound approximation of the objective function in (17) as discussed in section IV. Similarly, we defineXi

2k = Wi
k to

be the updated weight matrix of userk at iterationi, i.e.,

Xi
2k = Wi

k , Argmax
Wk

f(Wk;Xi
1,X

i
2, . . . ,X

i
2k−1,X

i−1
2k+1,X

i−1
2k , . . . ,Xi−1

2K )

wheref(·; ·) is the objective function in (17).

Let Xi , (Xi
1,X

i
2, . . . ,X

i
2K) be the tuple of transmit covariance–weight matrices andX∗ be a limit point of the sequence

{Xi}∞i=1. Therefore, there exists a subsequence of indices{i1, i2, ..., ij , ...} such that

lim
j→∞

Xij = X∗

First, we will prove that lim
j→∞

Xij+1
1 −Xij

1 = 0 by using contradiction. Suppose the contrary. Hence, by further restricting to

a subsequence if necessary, we have

∃γ∗ > 0 such thatγij ≥ γ∗, ∀j,

whereγij = ‖Xij+1
1 −Xij

1 ‖. Let Sij

1 , X
ij+1
1 −X

ij
1

γij
. Since‖Sij

1 ‖ = 1, according to Bolzano-Weierstrass theorem, there exists
a subset of indices, denoted byI, and a unit length matrixS∗1 such that

lim
ij∈I, j→∞

Sij

1 = S∗1.

Obviously,0 ≤ εγ∗ ≤ γij for every ε, 0 ≤ ε ≤ 1. Moreover, since the feasible set is convex,Xij

1 + εγ∗Sij

1 belongs to the
feasible set. Therefore, according to the definition ofXij+1

1 and using the concavity of̄f1, we have

f̄1(X
ij+1
1 ;Xij ) ≥ f̄1(X

ij

1 + εγ∗Sij

1 ;Xij ) ≥ f̄1(X
ij

1 ;Xij ). (24)

On the other hand, the value of the objective function in (17) is always increasing and bounded from above. Moreover, the
feasible set is closed and thereforeX∗ is in the feasible set. Hence, the value of objective function converges tof(X∗), i.e.,

lim
j→∞

f̄1(X
ij

1 ;Xij ) = lim
j→∞

f̄1(X
ij+1
1 ;Xij ) = f(X∗).

Therefore, lettingj →∞ with ij ∈ I in (24) yields

f̄1(X∗
1 + εγ∗S∗1;X

∗) = f(X∗), ∀ ε ∈ [0, 1],

which contradicts the strict concavity of̄f1(·) (c.f. Lemma 1). Therefore,lim
j→∞

Xij+1
1 −Xij

1 = 0, or equivalently, we have

lim
j→∞

Xij+1
1 = lim

j→∞
Xij

1 = X∗
1. (25)

On the other hand,Xij+1
1 is the local maximum of̄f1(·,Xij ). Hence,

Tr
[
∇X1 f̄1(X

ij+1
1 ;Xij )

T
(X1 −Xij

1 )
]
≤ 0,

for any feasible pointX1. Letting j →∞ and using (25) yield

Tr
[
∇X1 f̄1(X∗

1;X
∗)T (X1 −X∗

1)
]
≤ 0.

Sincef(·) and f̄1(·,X∗) have the same gradient with respect toX∗
1 at pointX∗, it follows that

Tr
[
∇X1f(X∗)T (X1 −X∗

1)
]
≤ 0.

Repeating the same argument for allk = 1, 2, . . . , 2K, we get

Tr
[
∇Xk

f(X∗)T (Xk −X∗
k)

]
≤ 0, ∀ k = 1, 2, . . . , 2K.

By summing up all the equations for allk’s we get,

Tr
[
∇Xf(X∗)T (X−X∗)

]
≤ 0

which implies the stationarity ofX∗.
A couple of remarks are in order. First, in the proof of Theorem 3 we have only used the strict concavity of functionf̄(·).

Consequently, the proof works for other objective functions that have the same property and using similar methods, e.g. [42].
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Second,after solving (22) to get the solutionQ∗
k, we can update the transmit covariance matrix by using relaxation parameter

0 < α ≤ 1, i.e., Qk ←− αQ∗
k + (1− α)Q̃k. It can be shown that the convergence result of Theorem 3 holds even by using a

fixed relaxation parameter.
An alternative to solving (22) at each iteration is to update the transmit covariance matrix in a totally unselfish manner, i.e.,

solving the following problem

min
Qk

Tr [BkQk]

s.t. Tr(Qk) = pk, Qk < 0. (26)

The above problem has a closed form solutionQk = pkqqT , whereq is the eigen vector ofBk corresponding to its minimum
eigen value. This unselfish approach requires all the users to exhaust all their transmit power, potentially causing unnecessary
interference. Furthermore, it results in one DoF for each user becauseQk is always rank one. In cases that the all one DoF
vector is not appropriate either because it is not achievable or because it is too conservative, the above unselfish strategy cannot
lead to the maximization of sum DoFs.

In general, if we know the DoF of each user a-priori and allocate equal power across the data streams, we can update the
transmit beamformer of userk by solving the following optimization problem:

min
Vk

Tr
[
VT

k BkVk

]
(27)

s.t. VT
k Vk =

pk

dk
I.

This approach lets each transmitter use maximum power and pick a transmit covariance matrixVk so as to minimize the
total interference to other users. It has a closed form solutionVk whose columns are proportional to the eigenvectors ofBk

corresponding to itsdk smallest eigen values, scaled appropriately to satisfy the power budget constraint.

1. initialize with Vk = 0 andWk = I, for all k = 1, 2, · · · ,K
2. repeat
3. for k = 1, 2, · · · ,K do
4. updateVk by solving (27)
5. updateWk according to (18)
6. until convergence

3: The unselfish algorithm for sum DoF maximization

V. SIMULATION RESULTS

In this section, we present some numerical results comparing the Decentralized Interference Alignment (DIA) method [2]
with our proposed methods. All numerical results are averaged over 20 channel realizations. In each channel realization, the
path loss of the channel coefficients are generated by a relay-backhaul model provided by Huawei Technologies. We consider
19-hexagonal wrap-around cell layout. We randomly chooseK base stations, each serving a random relay in its own cell at
each time slot. Each base station serves different relays in its own cell orthogonally. Therefore, at each time slot, the base
station-relays form an interference channel. The relays have fixed locations so the the system has enough time to learn the
channels. The MIMO channel coefficients are modeled by the standard single tap Rayleigh fading model. We consider linear
MMSE receivers and equal power budget for all users and for all methods. To implement DIA, we need to predetermine DoF
for all users. In all simulations DoFs are set to be equal for all users.

In the first numerical experiment, we considerK = 10 base station-relay pairs, each equipped withM = 2 antennas. The
predetermined degrees of freedom used in DIA method ared1 = d2 = . . . = dK = d = 1. Figure 4 represents the sum-rate
comparison between the proposed methods and DIA. As Figure 4 shows, the proposed method yields substantially higher
sum-rates in this case. In fact, the sum-rate achieved by the DIA method does not grow linearly with SNR, indicating that
interference alignment has not been achieved.

It is known that the DIA method works well for theK = 3 case where interference alignment is possible [2]. We consider
the case ofK = 3 transceiver pairs each equipped withM = 3 antennas and one DoF is considered for each transmitter. As can
be seen in Fig. 5, the selfish and the SDP approach works well in low SNR, but is outperformed by the DIA approach in high
SNR region where the interference alignment effect begins to kick in. Interestingly, our Unselfish approach for interference
alignment outperforms the DIA algorithm in the entire practical SNR range. Although the DIA method and the Unselfish
approach both achieve a sum-rate that increases linearly with SNR, the Unselfish approach has a better offset compared to the
DIA method.
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4: Sum-rate vs. SNR:K = 10,M = 2, d = 1
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5: Sum-rate vs. SNR:K = 4,M = 3, d = 1

VI. A PPENDIX: PROOF OFLEMMAS 1 AND 2

Lemma 1 If the direct channel matrices are full-rank and tall, the function:

f̄2k−1(Qk) , αkTr

[
WkHkkQkHT

kk(σ2I +
K∑

l=1

Hk`Q`HT
k`)

−1

]
− Tr [BkQk] (28)

is strictly concave with respect to symmetric positive semidefinite matrixQk. Moreover, the objective function of(17) is also
strictly convex with respect toWk.

Proof: Using the notations we have defined so far,f̄2k−1(Qk) is given by

f̄2k−1(Qk) = αk

[
Tr

(
WkCkk(Ckk + HkkQkHT

kk)−1
)− Tr(BkQk)

]
.

The second term in̄f2k−1(Qk) is linear inQk and does not change the strict concavity of the function. Hence, it suffices to
show the strict concavity ofTr

(
WkCkk(Ckk + HkkQkHT

kk)−1
)
. To do so, it is enough to prove that the function is strictly

concave in any feasible direction. We drop the indexk for notational simplicity. Let us consider a feasible direction denoted
by a symmetric matrixD 6= 0 of appropriate size and a scalart ≥ 0. We further define the notationD

′
= HDHT and the

function

h1(t) = Tr(WC(C + X + tD
′
))



14

whereX = HQHT andC+X+ tD
′

arepositive definite matrices. Since the direct channel matrixH is tall and full-rank, it
follows thatD

′ 6= 0. Moreover, by the definitions ofW andC (18)-(20), we know the matrixWC is symmetric and positive
definite. It suffices to show the strict concavity ofh1 with respect tot for each symmetricD.

To prove the strict concavity ofh1, we will calculate the second order derivative ofh1 with respect tot and prove that it
is negative. If we denoteB = (C + X + tD

′
)−1, then the first order derivative is given by

∂h1

∂t
=

∂Tr
(
WC(C + X + tD

′
)−1

)

∂t
= Tr

(
(∇BTr(WCB))T ∂B

∂t

)
.

In addition, we know that

∂B
∂t

= −BD
′
B,

∇BTr(WCB) = CT WT ,

which further implies

∂h1

∂t
= −Tr

(
WCBD

′
B

)
. (29)

In a similar way, we can calculate the second order derivative∂2h1
∂t2

∂2h1

∂t2
= −2Tr

(
D
′
BWCBD

′
B

)
= −2Tr

(
(D

′
BD

′
)(BWCB)

)
. (30)

As C andB are positive definite we can conclude thatBWCB is also positive definite andD
′
BD

′
is positive semi-definite.

SinceD
′
BD

′ 6= 0, it must have at least one non-zero eigenvalueλ > 0 with a corresponding eigenvectorv. Then,

∂2h1

∂t2
= −Tr

(
(D

′
BD

′
)(BWCB)

)

≤ −λTr
(
vT v(BWCB)

)

= −λTr
(
vT (BWCB)v

)

= −λTr
(
vT (B(WC)

1
2 (WC)

1
2 B)v

)

= −λ‖(WC)
1
2 Bv‖2 < 0.

Next we prove that the objective function in (17) is strictly convex inWk. The first summation in (17) is linear inWk ’s and
does not change the strict convexity. Moreover, the objective function in (17) is decomposable overWk. Hence, to accomplish
the proof of lemma 1 we just need to prove the strict convexity of− log det(Wk) in Wk. For notational simplicity, we drop
the indexk, and prove the strict convexity of− log det(W) along any feasible direction within the set of positive-definite
matrices. LetG be a feasible direction andt be a positive scalar such thatW + tG > 0. Then we define a one-dimensional
parametrization of− log det(W) along the directionG

h2(t) = − log det(W + tG).

Using properties of the determinant function and the fact thatW is positive-definite, we have

h2(t) = − log det(W1/2(I + tW−1/2GW−1/2)W1/2)
= − log det(W)− log det(I + tW−1/2GW−1/2)

= − log det(W)−
∑

i

log(1 + tλi),

whereλi’s are the eigenvalues ofW−1/2GW−1/2 and the last step of the above procedure is due to the fact that eigenvalues
of I + X are one plus the eigenvalues ofX. Obviously for any value ofλi the function− log(1 + tλi) is convex with respect
to t and for any non-zeroλi is strictly convex int. SinceG is non-zero andW is positive-definite, it follows that there exists
at least one non-zeroλi which means that−∑

i log(1 + tλi) is strictly convex. Thus,h2(t) is strictly convex int.

Lemma 2 Let {(Q∗
k,W∗

k)}K
k=1 be a stationary point of(17), then the point{Q∗

k}K
k=1 is a stationary point of(15). Conversely,

if {Q∗
k}K

k=1 is a stationary point of(15), then{(Q∗
k,W∗

k)}K
k=1 is a stationary point of(16), whereW∗

k , gk(Q∗)−1,
k = 1, 2, . . . , K.
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Proof: Let us useψ1(Q,W) andψ2(Q) to denote the objective functions of (17) and (16) respectively, i.e.,

ψ1(Q,W) ,
K∑

k=1

αk (Wkgk(Q))−
K∑

k=1

log det(Wk),

ψ2(Q) ,
K∑

k=1

log det(gk(Q)).

Suppose{Q∗
k,W∗

k}K
k=1 is a stationary point of (17). Since the constraints in (17) are separable in the variables, we have

Tr
(∇Qk

ψ1(Q∗,W∗)T (Qk −Q∗
k)

) ≥ 0, k = 1, 2, . . . , K, (31)

Tr
(∇Wk

ψ1(Q∗,W∗)T (Wk −W∗
k)

) ≥ 0, k = 1, 2, . . . ,K, (32)

for any feasible point{Qk,Wk}K
k=1. By taking the gradient ofψ1(·, ·) with respect toWk and further simplifying (32), we

get

Tr
[
(gk(Q∗)− (W∗

k)−1)(Wk −W∗
k)

] ≥ 0.

Since this inequality holds for anyWk, it follows that

W∗
k = gk(Q∗)−1, ∀ k = 1, 2, . . . ,K. (33)

Fix any index` and let us useqm,n to denote the(m,n)-th entry inQ`. Differentiating using chain rule, we obtain

∂ψ1

∂qm,n
(Q∗,W∗)

=
K∑

k=1

αkTr
(
W∗

k

∂gk(Q)
∂qm,n

)
(Q∗,W∗)

=
K∑

k=1

αkTr
(

gk(Q∗)−1 ∂gk(Q)
∂qm,n

)
(Q∗,W∗)

=
∂ψ2

∂qm,n
Q∗

,

wherethe second equality follows from (33). This further implies that

Tr
(∇Qk

ψ2(Q∗)T (Qk −Q∗
k)

)
= Tr

(∇Qk
ψ1(Q∗,W∗)T (Qk −Q∗

k)
) ≥ 0 ∀ k = 1, 2, . . . , K, (34)

which guarantees the stationarity of the point{Q∗
k}K

k=1 for (16). Furthermore, since the objective function in (16) and the
objective function in (15) only differ in sign, the stationarity of{Q∗

k}K
k=1 in (16) is equivalent to the stationarity of{Q∗

k}K
k=1

for (15). To prove the converse, we can defineW∗
k = gk(Q∗)−1, k = 1, 2, . . . , K, and simply reverse the above argument to

show that (31) and (32) hold. This further implies the stationarity of the point{(Q∗
k,W∗

k)}K
k=1 for (17).

REFERENCES

[1] V. Cadambe and S. Jafar, “Interference Alignment and the Degrees of Freedom of the K User Interference Channel,”IEEE Trans. On information
Theory, vol. 54, no. 8, Aug. 2008.

[2] K. Gomadam, V. R. Cadambe, and S. A. Jafar “Approaching the Capacity of Wireless Networks through Distributed Interference Alignment,”IEEE
GLOBECOM, 2008.

[3] T. Starr, J. M. Cioffi, and P. J. Silverman “Understanding Digital Subscriber Line Technology,”Prentice Hall, NJ, 1999.
[4] S. Haykin “Cognitive Radio: Brain-Empowered Wireless Communications,”IEEE J. Select. Areas Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005.
[5] A. J. Goldsmith and S. B. Wicker, “Design Challenges for Energy- Constrained Ad Hoc Wireless Networks,”IEEE Wireless Commun. Mag.,vol. 9,

no. 4, pp. 8-27, Aug. 2002.
[6] I. F. Akyildiz and X. Wang, “A Survey on Wireless Mesh Networks,”IEEE Commun. Mag.,vol. 43, no. 9, pp. 23-30, Sep. 2005.
[7] A. E. Gamal and M. H. Costa, “The Capacity Region of a Class of Deterministic Interference Channels,”IEEE Trans. on Info. Theory, vol. 33, no.

5, pp. 710-711, Sep. 1987.
[8] T. Han and K. Kobayashi, “A New Achievable Rate Region for the Interference Channel,”IEEE Trans. Inf. Theory, vol. 27, pp. 49-60, Jan. 1981.
[9] A. B. Carleial, “A Case Where Interference Does Not Reduce Capacity,”IEEE Trans. Inf. Theory, vol. 21, pp. 569-570, 1975.

[10] A. B. Carleial, “Interference Channels,”IEEE Trans. Inf. Theory, vol. 24, no. 1, pp. 60-70, 1978.
[11] H. Sato, “The Capacity of the Gaussian Interference Channel Under Strong Interference,”IEEE Trans. Inf. Theory, vol. 27, pp. 786-788, Nov. 1981.
[12] M. Costa, “On the Gaussian Interference Channel,”IEEE Trans. Inf. Theory, vol. 31, pp. 607-615, Sep. 1985.
[13] G. Kramer, “Feedback Strategies for White Gaussian Interference Networks,”IEEE Trans. Inf. Theory,vol. 48, pp. 1423-1438, Jun. 2002.
[14] I. Sason, “On the Achievable Rate Regions for the Gaussian Interference Channel,”IEEE Trans. Inf. Theory, vol. 50, pp. 1345-1356, Jun. 2004.
[15] R. Etkin, D. Tse, and H.Wang, “Gaussian Interference Channel Capacity to within One Bit,”IEEE Trans. Inf. Theory, Dec. 2008
[16] M. Charafeddine, A. Sezgin, and A. Paulraj, “Rate Region Frontiers for n User Interference Channel with Interference as Noise,”in Proc. 45th Annu.

Allerton Conf. Commun., Contr. Comput., Oct. 2007.
[17] C. Rao and B. Hassibi, “Gaussian Interference Channel at Low SNR,”in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2004.
[18] A. Motahari and A. Khandani, “Capacity Bounds for the Gaussian Interference Channel,”IEEE Trans. Inf. Theory, Feb. 2009
[19] D. Tuninetti, “Progresses on Gaussian Interference Channels with and without Generalized Feedback,”in Proc. 2008 Inf. Theory Appl. Workshop,

San Diego, CA, Jan. 2008, Univ. of California.



16

[20] S. Yang and D. Tuninetti, “A New Achievable Region for Interference Channel with Generalized Feedback,”in Proc. 42nd Annu. Conf. Inf. Sci. Syst.
(CISS), Mar. 2008.

[21] V. Annapureddy and V. Veeravalli, “Gaussian Interference Networks: Sum Capacity in the Low Interference Regime and New Outer Bounds on the
Capacity Region,”IEEE International Symposium on Information Theory, ISIT, 2008.

[22] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed Multiuser Power Control for Digital Subscriber Lines,”IEEE Journal of Selected Areas of
Communication, vol. 20, pp. 1105-115, Jun. 2002.

[23] S. T. Chung, S. J. Kim, J. Lee, and J. M. Cioffi, “A Game-theoretic Approach to Power Allocation in Frequency-selective Gaussian Interference
Channels,”in Proc. of the 2003 IEEE International Symposium on Information Theory (ISIT 2003),p. 316, Jun. 2003.

[24] R. Cendrillon, W. Yu, M. Moonen, J. Verlinden, and T. Bostoen, “Optimal Multiuser Spectrum Balancing for Digital Subscriber Lines,”IEEE Trans.
Signal Processing, vol. 54, pp. 922-933, May 2006.

[25] Z.-Q. Luo and J.-S. Pang, “Analysis of Iterative Waterfilling Algorithm for Multiuser Power Control in Digital Subscriber Lines,”EURASIP Jour. on
Applied Signal Processing,May 2006.

[26] M. Kobayashi, and G. Caire, “Iterative Waterfilling for Weighted Rate Sum Maximization in MIMO-OFDM Broadcast Channels,”ICASSP, Apr. 2007.
[27] R. Etkin, A. Parekh, and D. Tse, “Spectrum Sharing for Unlicensed Bands,”IEEE Jour. on Selected Areas of Communication,vol. 25, no. 3, pp.

517-528, Apr. 2007.
[28] K. W. Shum, K.-K. Leung, and C. W. Sung, “Convergence of Iterative Waterfilling Algorithm for Gaussian Interference Channels,”IEEE Jour. on

Selected Area in Communications,vol. 25, no 6, pp. 1091-1100, Aug. 2007.
[29] R. Cendrillon, J. Huang, M. Chiang, and M. Moonen, “Autonomous Spectrum Balancing for Digital Subscriber Lines,”IEEE Trans. on Signal

Processing, vol. 55, no. 8, pp. 4241-4257, Aug. 2007.
[30] G. Scutari, D. P. Palomar, and S. Barbarossa, “Asynchronous Iterative Waterfilling for Gaussian Frequency-Selective Interference Channels,”IEEE

Trans. on Information Theory, vol. 54, no. 7, pp. 2868-2878, Jul. 2008.
[31] G. Scutari, D. P. Palomar, and S. Barbarossa, “Optimal Linear Precoding Strategies for Wideband Non-Cooperative Systems based on Game Theory-

Part I: Nash Equilibria,”IEEE Trans. on Signal Processing,vol. 56, no. 3, pp. 1230-1249, Mar. 2008.
[32] G. Scutari, D. P. Palomar, and S. Barbarossa, “Optimal Linear Precoding Strategies for Wideband Non-Cooperative Systems based on Game Theory-

Part II: Algorithms,”IEEE Trans. on Signal Processing, vol. 56, no. 3, pp. 1250-1267, Mar. 2008. See also Proc. of the IEEE International Symposium
on Information Theory (ISIT), Seattle, WA, USA, Jul. 9-14, 2006.

[33] G. Scutari, D. P. Palomar, and S. Barbarossa, “Competitive Design of Multiuser MIMO Systems based on Game Theory: A Unified View,”IEEE
Jour. on Selected Areas in Communications (JSAC), special issue on “Game Theory in Communication Systems,”vol. 26, no. 7, pp. 1089-1103, Sep.
2008.

[34] E. Larsson and E. Jorswieck, “Competition and Collaboration on the MISO Interference Channel,”IEEE Jour. on Selected Areas in Communications,
vol. 26, no. 7, pp. 1059-1069, Sept. 2008.

[35] S. Ye and R. S. Blum, “Optimized Signaling for MIMO Interference Systems With Feedback,”IEEE Trans. on Signal Processing, vol. 51, no. 11,
pp. 2839-2848, Nov. 2003.

[36] M. F. Demirkol and M. A. Ingram, “Power-Controlled Capacity for Interfering MIMO Links,”in Proc. of the IEEE Vehicular Technology Conference
(VTC), Oct. 7-10, 2001, Atlantic City, NJ, (USA).

[37] C. Liang and K. R. Dandekar, “Power Management in MIMO Ad Hoc Networks: A Game-Theoretic Approach,”IEEE Trans. on Wireless
Communications, vol. 6, no. 4, pp. 2866-2882, Apr. 2007.

[38] G. Arslan, M. F. Demirkol, and Y. Song, “Equilibrium Efficiency Improvement in MIMO Interference Systems: A Decentralized Stream Control
Approach,” IEEE Trans. on Wireless Communications, vol. 6, no. 8, pp. 2984-2993, Aug. 2007

[39] L. Venturino, N. Prasad, and X. Wang, “A Successive Approximation Algorithm for Weighted Sum Rate Maximization in Downlink OFDMA
Networks,” Information Science and Systems, 2008, CISS 2008, 42nd Annual Conference.

[40] Z.-Q. Luo and S. Zhang, “Dynamic Spectrum Management: Complexity and Duality,”IEEE Journal of Selected Topics in Signal Processing, Special
Issue on Signal Processing and Networking for Dynamic Spectrum Access, vol. 2, pp. 57-73, 2008.

[41] R.W. Heath and S.W. Peters, “Interference Alignment via Alternating Minimization,”Proceedings of 2009 IEEE International Conference on Acoustics,
Speech and Signal Processing, 19-24 Apr. 2009, pp. 2445-2448.

[42] S. J. Kim and G. B. Giannakis, “Optimal Resource Allocation for MIMO Ad-hoc Cognitive Radio Networks,” inProc. Annual Allerton Conf. Commun.
Control Comput., pp. 39-45, Sep. 2008.

[43] O. Somekh, O. Simeone, Y. Bar-Ness, and A. Haimovich, “Distributed Multi-cell Zero-forcing Beamforming in Cellular Downlink Channels,”Proc.
IEEE Global Telecommun. Conf. (Globecom), pp. 1-6, 2006.

[44] M. Karakayali, G. Foschini, and R. Valenzuela, “Network Coordination for Spectrally Efficient Communications in Cellular Systems,”IEEE Wireless
Commun., vol. 13, no. 4, pp. 56-61, Aug. 2006.

[45] G. Foschini, M. Karakayali, and R. Valenzuela, “Coordinating Multiple Antenna Cellular Networks to Achieve Enormous Spectral Efficiency,”IEEE
Proc. Cummun., vol. 153, no. 4, pp. 548-555, Aug. 2006.

[46] P. Viswanath and D. Tse, “Sum Capacity of the Vector Gaussian Broadcast Channel and Uplink-Downlink Duality,”IEEE Trans. Inf. Theory, vol.
49, pp. 19121921, 2003.

[47] W. Yu, “Uplink-Downlink Duality via Minimax Duality,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 361-374, 2006.
[48] W. Yu and T. Lan, “Transmitter Optimization for the Multi-Antenna Downlink with Per-Antenna Power Constraints,”IEEE Trans. Signal Process.,

vol. 55, no. 6, pp. 26462660, 2007.
[49] P. Marsch and G. Fettweis, “On Multicell Cooperative Transmission in Backhaul-Constrained Cellular Systems,”Ann. Telecommun., vol. 63, pp.

253-269, 2008.
[50] S. Jing, D. Tse, J. Soriaga, J. Hou, J. Smee, and R. Padovani, “Multicell Downlink Capacity with Coordinated Processing,”EURASIP J. Wirel.

Commun. Netw., 2008.
[51] S. S. Christensen, R. Agarwal, E. d. Carvalho, and John M. Cioffi, “Weighted Sum-Rate Maximization Using Weighted MMSE for MIMO-BC

Beamforming Design,”IEEE Trans. Wireless Commun., vol. 7, no. 12, pp. 1-7, Dec. 2008.
[52] D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, and W. Yu, “Multi-cell MIMO Cooperative Networks: A New Look at Interference,”

submitted toIEEE Journal on Selected Areas in Communicationsin Jan. 2010.
[53] Z. K. M. Ho and D. Gesbert, “Balancing Egoism and Altruism on MIMO Interference Channel,” submitted toIEEE Journal on Selected Areas in

Communications, Available http://arxiv.org/PScache/arxiv/pdf/0910/0910.1688v3.pdf.
[54] R. Zakhour and D. Gesbert, “Coordination on the MISO Interference Channel Using the Virtual SINR Framework,”Proceedings of WSA 2009,

International ITG Workshop on Smart Antennas, Feb. 2009.


